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Abstract Clusters in the Potts model are connected sets of ne- neighbour sites for which 
the spin variables are in the same state Droplets can be obtained by adding bonds with 
probability p = 1 - exp(-K) between the sites in a cluster (where K is the Potts model’s 
inverse temperahlre). when q + 4. renormalization gmup (RG) fixed points describing clusters 
and droplets will coalesce, leading to logarithmic corrections. We calculate the precise form 
of lhese corrections used in a differential RG method, Our predictions are then tested using 
extensive Monte Carlo calculations. Theory and the simulations are found to be in excellent 
agreement. 

1. Introduction 

The percolation transition [ I ]  can be described in terms of geometrical properties of the 
infinite cluster of occupied sites appearing at the percolation threshold: critical exponents 
correspond to fractal dimensions [Z] of this cluster. This fact raised the question whether 
one can in general relate critical exponents to fractal dimensions or some suitably defined 
clusters. As a first guess, one can simply define a cluster in an Ising or q-state Potts 
model as a connected set of nearest neighbour sites for which the spin variables are in the 
same state [3]. However, it was soon found [4] that these clusters are not described by 
thermodynamic exponents: they are too compact. It is now clear that the critical exponents 
of the above models can be described in terms of the fractal properties of ‘droplets’ which are 
obtained by random bond dilution of the clusters. The most important fractal dimensions 
of two dimensional critical Potts droplets were recently determined using Coulomb gas 
techniques [8,9]. These droplets also are relevant to the design of algorithms for Monte 
Carlo simulation that are efficient near critical points [IO]. 

This still leaves the question open of what are the fractal properties of the nahely defined 
clusters. Recently, this problem was solved using renormalization group and conformal 
invariance arguments, first for the two-dimensional king model [ I I ,  121, then for the q- 
state Potts model [13]. One of the interesting aspects emerging from that work is that for 
q = 4 droplets and clusters coincide. So, for that model geometrical (percolation) and 
thermodynamic exponents are the same. Independently of this analytical work, extensive 
Monte Carlo simulations were performed in order to determine the fractal dimension of 
Potts cluster [ 141. While the results of these simulations are in good agreement with the 
analytic predictions for the king and threestate Potts case, the agreement was much less 
good for the case q = 4. In a renormalization group formulation the criticality of droplets 
and clusters will be described by fixed points which will come together as q 3 4, leading to 
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a marginal eigenvalue and logarithmic corrections [I51 at q = 4. In this paper we calculate 
the precise form of these logarithmic corrections and compare them with improved Monte- 
Carlo data. We find that this explains the disagreement between the analytical and Monte 
Carlo results. 

This paper is organized as follows. In section 2 we give a summary of known results 
on droplets and clusters. Then, in section 3 we calculate the logarithmic corrections near 
q = 4, using a differential renormaliiation group procedure. In section 4 we present the 
results of Monte Carlo simulations for droplets and clusters and compare them with the 
predictions %om section 3. Finally, in section 5 we present our conclusions. 

C Vderzande and J F Mark0 

2. Pot@ clusters, droplets and correlated site-bond percolation 

The q-state Potts model [I61 is a generalization of the Ising model. At each site i of a 
lattice there is a variable ui which can be in any of q states, ui = 1, . . . , q. The interaction 
is given by the reduced Hamiltonian: 

In d = 2 and for h = 0, this model has a phase transition at some K J q )  which for 
q < qc = 4 is continuous [171. 

For each configuration of the [ut} we define clusters as connected sets of nearest 
neighbour sites in the same state, e.g. in the state 1. The Hamiltonian (2.1) defines a 
problem of correlated site percolation for these clusters. Indeed, for K -+ M, H = Ot, 
one expects that all sites will have U = I. Upon increasing the temperature the probability 
P that a given site of the lattice belongs to the ‘infinite’ (i.e. lattice spanning) cluster of 
spins in state 1 will decrease. It was shown rigorously by Coniglio and Peruggi [7] that the 
percolation threshold for this correlated site percolation problem precisely coincides with 
K,(q) .  For K -+ K,(q) from above, we therefore expect: 

(2.2) 

The critical exponent & in general is not the same as the thermodynamic exponent p of 
the Potts model. 

We extend the above percolation problem to a correlated sitsbond percolation problem 
by adding bonds with probabiIity p (uncorrelated) between n e m t  neighbour sites of the 
clusters. Sets of nearest neighbour sites for which the spins are in the same state (l), and 
which are connected with bonds will be referred to as bond-diluted clusters. In order to 
study these we need a percolative generating function. This generating function f can 
be defined in terms of the average number (per site) of bond-diluted clusters of s sites, 
nAK, h,  P); 

P(K) 2 A ( K  - K & ) ) b .  

f(K, h.  P, H )  = x n , ( K ,  h, p)exp(-sH) (2.3) 
I 

where H is a ‘ghost’ magnetic field. An important result for f was obtained by Coniglio 
and Peruggi 171, who introduced a ‘Potts diluted‘ Potts model (PdP) in which one couples 
the original Potts variables U to other n-state Potts variables p through the Hamiltonian: 
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It was shown by these authors that f = dF/dn[.,t if one takes 

p = 1 - exp(-1) (2.5) 

and F is the free energy (per site) of the Hamiltonian (4). In the special case h = H = 0, 
J = K .  it can finally be shown that for n -+ 1, Hpdp = Hp [7], implying that the bond- 
diluted clusters for these parameter values exhibit the same singularities as are found in the 
thermodynamic properties of the Potts model of the same q. Following again the authors 
of 171 we will call the bond-diluted clusters in this case droplets. These are also the objects 
used in the Swendsen-Wang Monte Carlo algorithm [lo]. In the rest of this paper we will 
be interested in what happens to clusters and droplets near the Potts critical temperature 
K = K&), h = 0. In a recent paper [131, one of the present authors (CV) discussed the 
behaviour of clusters and droplets under the renormalization group (RG). Using arguments 
from conformal invariance, general RG arguments, and extending results obtained earlier 
for the q = 2 (Jsing) case 111,121, it was shown that the l i e  K = K&), h = H = 0 
(hereafter referred to as the critical line) is invariant under renormalization and that along 
the l i e  there are three fixed points, shown in figure 1. These are the pure Potts-fixed point 
at J = p = 0, the droplet fixed point at pc = 1 - exp(-K,), and the cluster fixed point at 
an unknown value of p (but > pc) .  This latter point attracts the critical clusters at p = 1. 
Most interestingly, it was found that for q -+ 4 the cluster and droplet fixed point coalesce, 
so that the two kinds of geometrical objects have the same singularities for that q-value. 
However, it is also known that the coalescence of two fixed points leads to the appearance 
of logarithmic corrections 1151. These log-corrections form the main subject of this paper. 
We remark that a coalescence of two fixed points was already observed several years ago 
in the RG calculation of the thermodynamic properties of the Potts model for q + 4 [IS]. 
We now turn to a discussion of the critical exponents at the cluster and droplet fixed points. 
These are conveniently parameterized in terms of the variable m which can be related to 
the number of Potts states q as: 

= 2COS (-) 7r . 
m + l  

In the (K, h, J ,  H)-parameter space the cluster fixed point has three relevant eigenvalues 
while the droplet fixed point has four. We will be most interested in the eigenvalues 
corresponding to the variablest H and U = J - J* where J, denotes the value of J at 
the droplet or cluster fixed point. Below, we refer to quantities at the cluster or droplet 
fixed points by the superscript c or d ,  respectively; equations where these superscripts are 
missing hold for both fixed points. 

These eigenvalues at the droplet fixed point were determined by Conglio 191, and at the 
cluster fixed point by one of us [13]. The results are: 

15m2 + 14m + 3 15m2 + 16m + 4 '' = 8m2 + 8m " 8mZ + 8m 
(2.7) 

t We will use the same notation for the (non)linear scaling fields and for the associated parameters tiom the 
Hamiltonian (2.4). 
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Figure 1. Renormalization group flow for ihe model (2.4) along lhe critical line. 

The eigenvalues associated with the variables h and t = K - K,(q) are the same at both 
fixed points and their values are 

3(m - 1) 
2m 

Ism2 + 14m + 3 
8m2 + 8m . Yh = Yr = 

We can now write down a scaling relation for f in the neighbourhood of one of the fixed 
points. As we will later verify our analytical results with Monte Carlo simulations it is 
useful to include the finite system size L.  We thus have, near both fixed points, the scaling 
relation: 

~ ( ~ , ~ , U , H . L ) ~ L ~ ~ ~ ( L ~ ~ ~ , L Y ~ ~ , L ~ " U , L ~ ~ ~ H ,  1). (2.9) 

A quantity which can easily be measured in a Monte Carlo calculation is the percolative 
susceptibility x p  which is defined as: 

(2.10) 

which from (2.3) is also given by 

x p ( K , h , p ,  H) = Cs'n,(K,h,p)exp(-sH).  

In the following we will be mostly interested in this susceptibility for K = K,, h = H = 0 
and in a finite system of size L ,  a quantity for which we will use the notation x p ( p ,  L).  

At the droplet (or cluster) fixed point we get from (2.9) that in a finite system x p  grows 
as a power law of L:  

,yp(pc, L )  - L-z+zy i  (2.11) 
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at the droplet fixed point. For clusters, yu is irrelevant (2.7), giving: 

x p ( p  = 1, L)  - L-Z+*yR. (2.12) 

At this point it is appropriate to point out that y~ and yu can be interpreted as fractal 
dimensions of the infinite percolating cluster (or droplet) which exists at the critical line 
[9k, 131. Indeed, y~ is the fractal dimension of the set of points in the cluster (or droplet), 
while yu is the fractal dimension of the 'red bonds' [19]. 

In a recent paper, one of us (JM) [ 141 performed extensive Monte Carlo simulations 
of the quantity x P ( p  = 1, L )  for systems with L up to 512. From these data the fractal 
dimension y& could be extracted. The results were yfi = 1.947 rt ,005, 1.927 f .007 
and 1.918 2~ ,015 for q = 2, 3 and 4 respectively. These results have to be compared 
with the predictions from (2.7) which give y; = 187/96, 153/80 and 15/8 respectively. 
While there is excellent agreement for q = 2, and good agreement for q = 3, there are 
significant differences for q = 4. We believe that this discrepancy is due to logarithmic 
corrections. It is the purpose of the present paper to calculate the logarithmic corrections 
to the equation (2.12) at q = 4. This is done in section 3. These predictions are then 
compared with improved Monte Carlo data in section 4. 

3. The renormaliiation group and logarithmic corrections 

For q -+ 4, as discussed in a previous section, the droplet and cluster fixed points will 
coalesce, leading to an exponent y:'d + 0 which in tum leads to logarithmic corrections. 
In this section we will calculate the precise form of these corrections using techniques that 
were developed for this purpose in the study of the thermodynamic properties of the Potts 
model near q = 4 [20-22]. 

Consider a fixed point with the (nonlinear) scaling fields @ j  and associated scaling 
exponents yi . In particular let @I be a scaling field with the marginal eigenvalue y1 = 0. 
Under an infinitesimal change in length dx these fields will transform according to the RC 
equations: 

(3.1) 

where ajjk # 0 only when yi = y j  + yk. The coefficients aijk are proportional to the 
operator product expansion coefficients [23]. These can in principle be determined from 
the conformal field theory describing the critical system [24,25]. Unfortunately, we do 
not know enough about the theory describing the critical Potts clusters to determine all the 
coefficients a,jk. Nevertheless, we can determine the form of the RC equations as follows. 

For the four-state Potts model, we have from (2.8) (m CO) 

y i  = yh = y; = 15/8 yr = 3/2 y," = y i  = 0. 

Then solely on the basis of the requirement yi = yj + yk  we can write (3.1) as: 

where $1 = U ,  i.e. the scaling field with y1 = y,, = 0. Further, we expect physically that the 
scaling of the thermodynamic fields f and h cannot be influenced by geomehic properties 
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and vice versa. The fields t and h thus still obey the RG equations given by, e.g. Cardy et 
a1 1211. 

Thus we only have to write down the RG equations for the remaining fields U and H ,  
in the neighbourhood of 4 = 4, near the multicritical point at which cluster and droplet 
critical lines come together to first order in t = q - 4. Following the procedure described 
in [21] we obtain: 

C Vanderzande and J F Mark0 

du 
dx 
- = a ( u Z + € )  

and 

(3.3~) 

(3.3b) 

where 01 and p are constants which remain to be determined (recall (2.7) which gives 
yH(q = 4) = 15/8). Notice that for E = 0, (3.3) is of the form (3.2). In a finite system, 
the size b will be normalized according to: 

db - = -b. 
dx (3.34 

The equations (3.3) have two fixed points: they are at H = b-’ = 0 and U = 2 ~ 6 .  
These, we identify as the droplet (+) and cluster (-) fixed point. Linearization of (3.3) at 
these fixed points gives the following expansions for the critical exponents yu and y ~ :  

y.(q) = *tzcr%&+ ... and y x ( q )  = yH(q = 4) i=p&+. . . . (3.4) 

If we now expand the equations (2.7) to first order in 6 and compare with (3.4) we find 
01 = 1/2n and p = -1/16n. Having thus fixed the constants 01 and p we can integrate the 
equations (3.3). For a system of size L and with initial values ug, Hg for the scaling fields 
U and H we have: 

Under this rescaling, the free energy f will transform as: 

f(0.0. U O ,  Ha, L )  L-*f(O.O, u(L), H ( L ) ,  1). (3.6) 

We have placed ourselves already at the ‘thermodynamic’ fixed point t = h = 0. 
Equation (3.6) replaces (2.9) at q = 4. We then find that the susceptibility (2.10) for 
clusters at p = 1 (i.e. with ug c 0) diverges with L as: 

(3.7) 

We can thus see that if we use equation (2.11) to analyse a set of numerical data, instead 
of the correct result (3.7) we will get an estimate for the fractal dimension of clusters y;l 
which is too big. This explains qualitatively the discrepancy between the prediction (2.7) 
and the numerical results of [14], for q = 4. 
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In the next section we will compare (3.7) with improved Monte Carlo data. Here we 
point out some further consequences of our RG equations. First, we can make uo = 0 in 
equation (3.6) by putting ourselves at the droplet (= cluster) fixed point. For q = 4, and 
on the square lattice, this fixed point is located at (one has Kc = In f i  + 1 on the square 
lattice [16]) 

n 
I L 

p = pc  = 1 - exp(-K,) = 1 - ~ = - 
2 + l  3 .  (3.8) 

Of course, for this p-value, the equations (3.7) and (2.11) coincide. In the next section we 
will also verify this prediction with Monte Carlo simulations. 

Finally, we derive some results for the percolation probability P as a function of q .  At 
the Potts critical temperature (2.2) indicates that P + 0. This is only true when q < 4. 
For q > 4 the two dimensional Potts model has a first-order transition at K,(q), and we 
thus have P ( K , ( q ) )  > 0. We now briefly calculate how P goes to zero when q --t 4 from 
above. We can write 

a f  a f  P(K,) = -(t -+ O+) - -(t  -+ 0-), 
aH aH (3.9) 

To calculate P we thus need to extend (3.6) to the case where t # 0, for infinite system 
size. 

Under a rescaling with a factor b = ex, the scaling relation for f then becomes: 

f(to.0.u0, ~ 0 )  g e - 2 ” f ( t ( x ) . ~ , ~ ( ~ ) ,  HW) (3.10) 

from which we have 

In calculating (3.9) we use the fact that the value t = Of will be renormalized (when 
x -+ 03) to a zero temperature fixed point where P = af/aH = 1, while t = 0- will 
renormalize to a high temperature fixed point with P = 0. Using (3.9) and (3.11) we get 

The derivative in (3.12) can be obtained by combining the equations (3.3) into 

d H  15/8 - 1/16x(u) 
-=  Zn du H (U2 + E) 

so that after integration we get 

[ r(’) z /4  + 1/8u du] P(K, )  = lim exp- 
yo U = + €  x-rm 

(3.12) 

(3.13) 

from which we obtain (using uo c 0, and l i n ~ , + ~  u ( x )  > 0) that for E -+ 0 from above 

(3.14) 

This result can be compared with similar results which exists for the latent heat, or for the 
magnetization for q -+ 4+ [21]. 

z= 
4& 

P ( K , )  -exp--(l+O(~)). 
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4. Monte Car10 catculation of susceptibilities 

In this section, we show that the preceding analytical conclusions are verified by numerical 
Monte-Carlo (MC) calculations of percolative and magnetic susceptibilities of the critical 
q = 4 Potts model. These calculations employ methods similar to those previously used 
by one of the authors (JM) although much smaller statistical errors have been achieved 
in this study by the use of much longer MC integrations. We have used the Swendsen- 
Wang (SW) algorithm [lo] to do the Monte Carlo simulation. A single move is defined as 
follows: starting from a spin state {q}, bonds are added between neighbouring like spins 
with probability 1 -e-K, while no bonds are added between neighbouring unlike spins. The 
sets of spins that are connected together by bonds thus just coincide with the droplets. Then 
each droplet is assigned a spin from 1 to q randomly: changing each spin in a droplet to the 
assigned value for that droplet completes the SW move. It is easy to show that the probability 
of observing a given spin state [ui] in an infinite sequence of such moves is proportional 
to the B o l t ”  weight exp(-fiH,{ui)). In a finite system, the sw clusters must have a 
characteristic scale of the system size. Thus this algorithm rapidly (in terms of numbers 
of sw moves) decorrelates distant sites. It tums out that the added computation needed to 
construct the cluster is more than compensated for by a vast reduction in the correlation 
time, making the algorithm preferable to a single-siteflip Metropolis MC calculation. 

We consider a critical 4-state Potts model with periodic boundary conditions on an 
L x L-site square lattice. The magnetic susceptibility x may be expressed as an integral of 
the connected two-point magnetic correlator of spins U; and uj, g( i ,  j )  

C Vanderzande and J F Mark0 

- q- ’ :  

This is just the mean-squared fluctuation of the number of spins in each spin state 

K ( L )  = L-’ ((m:) - ( m 2 )  
s=1, .... q 

(4.2) 

where m, = E, c % ~ , ~ , ,  At criticality (ignoring logarithmic corrections for the moment) 
g(i. j )  Ir; - rj12Yk-4, so we expect x ( L )  % L2Yh-z, where yh = 1.875 for Q = 4. 
The percolative susceptibility, defined in (2.10). can be determined in a Monte Carlo 
calculation as the average sum of the squares of the ‘masses’ s of clusters that are obtained 
by connecting, with probability p neighbouring like spins: 

where again the scaling behaviour indicated (from (2.11) and (2.12)) ignores logarithmic 
corrections. It should be noted that the x p ( p .  L )  measurement procedure is independent of 
the sw integration, i.e. p # 1 - e-K in general. 

We have carried out computations with these susceptibilities for L between 4 and 
240 using the following scheme for each value of L. First, the ‘correlation time’ r (L )  
was measured: we imagine that this is the typical number of sw moves between two 
spin configurations that are predominantly ‘uncorrelated’. What exactly this means is not 
entirely clear: however, one can define this time to be the characteristic decay time of 
the autocorrelation function of some operator. We chose to measure the autocorrelation of 
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10 20 50 100 ZOO 500 

system size L 

F i e  2. Correlation times r as a function of system size L for critical q = 4 POUS model. 
The shaight line indicates a fit of the form r = AL‘. with amplitude A = 1.32 and dynamic 
exponent L = 0.94. 

fluctuations of the sum of the squares of the masses of the p = 1 clusters (i.e. the value 
of of (4.3)). This was done by first equilibrating a spin configuration by applying 
= 20000 Sw steps, and then calculating the autoconelation function for a series of 16384 
consecutive sx values. A decaying autocorrelation function is obtained: we define s to be 
the number of sw steps at which the autocorrelation decays to I/e of its peak value. 

Figure 2 shows s(L): a (very approximate) dynamic exponent z may be measured by 
fitting the form s(L) % AL2 to the data, giving A = 1.32(5) and e = 0.94(4). It would be 
straightforward to determine r more accurately, but since we just want to ensure that we 
are measuring equilibrium, the rough accuracy of this study is sufficient. The main result 
of this graph is that the correlation time for L = 240, the largest system studied, is of order 
200. 

We measured three susceptibilities: (a)  magnetic susceptibility x ( L ) ,  (6 )  p = 1 
percolative susceptibility x P ( p  = l , L ) ,  and ( c )  p = 2/3 percolative susceptibility 
x P ( p  = 2/3. L). For each of L = 4, 8, 12,. . .,60, a set of data (one value of each of 
the x’s) was obtained by (a) equilibrating for TE = 8192 sw steps, and (b )  averaging the 
susceptibility operators over TR = 20000 further SW steps. This procedure was then repeated 
for each L to obtain N R  = 110 statistically independent samples of the susceptibilities, using 
the end configuration of one run as the starting configuration for the next. The resulting 
data sets were used to obtain final estimates for the mean and standard deviations of the 
susceptibility distributions. Our error estimates are the standard deviations divided by NAI’, 
appropriate for statistically independent samples. For L = 64, 80, 96, 112 and 128, the 
same procedure was carried out with TE = 16384, TR = 40000 and N R  = 54; for L = 192 
and L = 240 we used T, = 32768, TR = 40000, and NR = 78. We note that these run 
times are at least 10 times as large as the correlation times. 

The averaged data for the p = 1 percolative susceptibility, and for the magnetic 
susceptibility, are shown in figure 3. The errors are invisible as they are smaller than 
the plot symbols. The power law L114 is shown for comparison, and appears as a straight 
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1 2 3 4 5 6 
log(system size L) 

Figure 3. Percnlative susceptibility for bond probabfity p = 1 (circles) and magnetic 
susceptibility (crosses) for critical q = 4 Pot& model. Ermr bars are smaller than the symbob. 
A line of slope 1.75 is plotted beside the data for comparison. 

line on the log-log plot By eye, it appears that x p ( p  = 1) has a slope in excess of 7/4, 
while x appears to have a slope very close to 7/4. NaTvely extracting exponents for the data 
sets by least-squares linear regression of the susceptibility logarithms against In L gives: 
xp(p = 1, L) a L',807 [12] and x ( L )  a L1.746 161, giving estimates of y~ = 1.904(6) and 
yh = 1.873(3). We see that yh is in perfect accord with the exact results y,, = 15/8 but Y H  
is significantly larger than the conformal invariance result for the q = 4 clusters Y H  = 1518. 

We note that the apparent value of Y H  = 1.904(6) is somewhat smaller than the result 
(1.918(15)) of the previous numerical study 1141, although their error ranges do overlap. 
This difference could be due to the data for L = 256 and L = 5 1 2  fitting a power law to 
the portion of the old data set with L < 256 yields y~ = 1.909(14), in closer agreement 
with the new data. A case could be made to ignore those data, as they have much larger 
errors. There is extremely close agreement of the old and new data in the range L < 80. 
In any case, the approach of fitting a pure power law to xp  is inappropriate if there are 
appreciable logarithmic corrections. 

The discrepancy between the apparent power-law or x p  and the exact exponent may 
be resolved by noting that xp(p = 1, L )  has the scaling form (3.7). The iirst thing to do 
is to get rid of an overall factor of L714; in figure 4 we show In(Xp(p = 1, L)/L714) and 
In(&(p = 2/3, L) /L7 /4 )  plotted versus InL. Now the errors are visible (note the change 
in scale compared with figure 3). and we can see that we can resolve definite structure in 
xP/L7l4.  For clusters ( p  = 1) we see that after removal of the L714, there is a component 
of x p  that slowly increases with L, with a decreasing slopebehaviour consistent with (3.7) 
with a negative value of UO. A nonlinear-least-squares fit of the data for L 2 24 to the 
form xp(p = 1, L) = AL7I4(I - uoln L/2rr)'I4 results in the fit parameters A = 0.894(2) 
and uo = -7.49(8). This curve is shown in figure 4, and passes through the data points 
within the error bounds for L 2 24. The lower data points in figure 4 show the percolative 
susceptibility for the 'droplets' ( p  = 213): in agreement with the prediction of section 3, 
the correction to the power-law behaviour is greatly reduced there is now a correction to 
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0.5 , I , I I * ' "  
Critical 9=4 Path  model clusters 

0 2 4 6 
log(systcm size 1.) 

Figure 4. Percolative susceptibility for clusters ( p  = I ,  upper data) and for droplets (p = 213, 
lower data) for critical q = 4 POUS model after removal of the leading power law L7I4, The 
smoothcurveisafitofthesealingformA(l-u~l~gL/Zn)'/~ tothedatafcrxp(p= I)/L'/' 
for L 2 24: the paramem A = 0.894(2) and I((I = -7.49(8) are obtained The lower 
data show that this wrrection is grea(ly suppressed when we set p = 213. The dashed c w e  
shows the logarithmic correction for the magnetic susceptibility, Bp(l - u0.p in LlZn)-'/* for 
B p  = 1.139(3) and u0.p = -0.58(6). obtained by fitting to the xp@ = 2/3)/L'l4 dah for 
L 2 24. 

scaling that slowly decreases with L.  
Further evidence for the prediction that x p ( p  = 2 /3 )  describes droplets is shown in 

figure 5, where we plot the logarithm of the magnetic susceptibility with the leading 
power law divided out, l n [ ~ ( L ) / L ' / ~ l ,  versus InL. As can be seen by comparison 
with figure 4, apart from an overall multiplicative factor (a vertical shift on the log- 
log plots, the behaviours of x/L7l4  and x P ( p  = 2/3) /L7/4  are nearly identical. Tbis 
agrees with the picture presented in section 3, i.e. that for p = 2/3  the percolative and 
magnetic properties coincide. Cardy et al [22] have shown that there are logarithmic 
corrections to the magnetic susceptibility of the critical q = 4 Potts model with form 
x(L) /L7 l4  = B( l  - uolnL/2n)- ' / s .  We find that we may fit our x ( L )  data for L > 24 
with B = 3.41(1) and uo = -0.57(6): the fit scaling function is shown as a solid line in 
figure 5. Furthermore, we may fit this scaling form to the L > 24 region of the x p @  = 213) 
data of figure 4, giving Bp = 1.139(3) and uo,p = -0.58(6): the resulting fit is shown 
in figure 4 as a dashed line. The agreement uo = q p  further supports the arguments of 
section 3. 

5. condusions 

In this paper, we have presented a derivation of the form of logarithmic corrections for the 
percolative properties of the critical q = 4 Potts model. When the probability p (that a 
bond is made between neighbours with equal spins) used to compute x p  is p = 1 clusters 
of fractal dimension 1518 are revealed. However, for a system of finite size L ,  logarithmic 
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1 .o 
0 2 4 6 

log(system size L) 

Figure 5. Magnetic susceptibility for critical q = 4 Potls model after removal of the leading 
power law L7I4. A weak correction to leading scaling is observed: apart bom an overall 
multiplicative constant (an addictive shift on the log-log plot) we see that this correction is 
almost identical to that obtained for xp(p  = 213) in figure 4. The solid c w e  indicates the 
magnetic logarithmic correction B(1 - uoln L/2n)-'I8 for B = 3.41(1) and ug = -0.57(6), 
obtained by fitting to the xlL7l4 dam for L > 24. 

corrections to the leading L7I4 power-law scaling of xP have the property that they make 
it appear to have a larger exponent, corresponding to a slightly larger fractal dimension of 
about 1.91. We have canied out large-scale numerical calculations of the finite-size scaling 
of x p ,  and we find the results to agree with the analytical scaling prediction, resolving this 
apparent discrepancy. 

Furthermore, the analytical theory predicts that at q = 4, the clusters and droplets 
(the objects accounted for by xP with pc = 1 - e-',) are described by the same scaling 
exponents (they have the same fractal dimension of 15/8), and also that the droplet xp  
should not have the logarithmic correction described above, by virtue of the fact that the 
droplet fixed point is located at pc. This was also verified: corrections to leading scaling are 
much smaller than for the clusters ( p  = 1). The remaining corrections are identical to those 
for the magnetic susceptibility x .  This last conclusion is remarkable once one considers 
that these two quantities are averages of qualitatively differently defined operators: x is 
simply calculated from the spins, while x,, must be computed in a highly non-local way, 
by decomposing the lattice of spins into perco!ation clusters! 

Percolative properties of critical Potts models in d = 2 provide a simple example of 
how one can find (relevant) operators in one model that are not contained in the conformal 
field theory describing the thermodynamical fixed point. In the q = 4 case the percolative 
and magnetic correlators have equal scaling dimensions, but logarithmic corrections to the 
percolative corrections (for e.g. p = 1) distinguish them from the magnetic correlations: 
the form of this logarithmic correction to xP remains as a reminder that there are scaling 
properties of the spins of the critical Pons model that are not described by the RG theory of 
the thermodynamical properties. 
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